Title: | Soil and Water Conservation |
---|---|
Description: | Includes four functions: RFactor_calc(), RFactor_est(), KFactor() and SoilLoss(). The rainfall erosivity factors can be calculated or estimated, and soil erodibility will be estimated by the equation extracted from the monograph. Soil loss will be estimated by the product of five factors (rainfall erosivity, soil erodibility, length and steepness slope, cover-management factor and support practice factor. In the future, additional functions can be included. This efforts to advance research in soil and water conservation, with fast and accurate results. |
Authors: | Dione Pereira Cardoso [aut, cre]
|
Maintainer: | Dione Pereira Cardoso <[email protected]> |
License: | GPL-3 |
Version: | 1.0.1 |
Built: | 2025-02-12 06:02:46 UTC |
Source: | https://github.com/cran/SoilConservation |
Includes four functions: RFactor_calc(), RFactor_est(), KFactor() and SoilLoss(). The rainfall erosivity factors can be calculated or estimated, and soil erodibility will be estimated by the equation extracted from the monograph. Soil loss will be estimated by the product of five factors (rainfall erosivity, soil erodibility, length and steepness slope, cover-management factor and support practice factor. In the future, additional functions can be included. This efforts to advance research in soil and water conservation, with fast and accurate results.
Package: | SoilConservation |
Type: | Package |
Version: | 1.0.1 |
Date: | 2024-12-14 |
License: | GPL (>= 3) |
Dione Pereira Cardoso [email protected]
Paulo Cesar Ossani [email protected]
Junior Cesar Avanzi [email protected]
Arnoldus H. M. J. (1980). An approximation of the rainfall factor in the universal soil loss equation. In: De Boodt M, Gabriels D (eds) Assessment of erosion. JohnWiley & Sons, Chichister, pp 127–132. <https:...>.
Brown, L.C. and Foster, G.R. (1987). Storm erosivity using idealized intensity distributions. Trans. ASAE 30, 2, 379–386. <https:...>.
Cemaden (2024). Centro nacional de monitoramento e alertas de desastres naturais - <http://www.cemaden.gov.br/apresentacao/>.
Denardin, J. E. (1990). “Erodibilidade de solo estimada por meio de parâmetros físicos e químicos”. Piracicaba, ESALQ, 1990. 81p. (Tese de Doutorado). <https:...>
Godoi, R. F.; Rodrigues, D. B.; Borrelli, P.; Oliveira, P. T. S. (2021). “High-resolution soil erodibility map of Brazil”. Science of The Total Environment, v. 781, p. 146673. <doi:10.1016/j.scitotenv.2021.146673>.
INMET - Instituto Nacional de Meteorologia (2018). “BDMEP - Banco de Dados Meteorológicos para Ensino e Pesquisa - Série Histórica - Dados Mensais – Precipitação (mm)”. Brasília.
Oliveira, P. T. S. and Wendland, E.; Nearing, M. A. (2013). “Rainfall erosivity in Brazil: A review”. Catena, v. 100, p. 139-147, 2013. <doi:10.1016/j.catena.2012.08.006>.
RadamBrasil, P. (1981a). Folha SC. 22 Tocantins, Rio de Janeiro: Ministério das Minas e Energia. 524p. <https:...>
RadamBrasil, P. (1981b). FOLHA SD. 22 Goiás, Rio de Janeiro: Ministério das Minas e Energia. 640p. <https:...>
RadamBrasil, P. (1982). Folha SD. 23: Brasília, Rio de Janeiro: Ministério das Minas e Energia. 660p. <https:...>
RadamBrasil, P. (1983). Folha SE. 22 Goiânia, Rio de Janeiro: Ministério das Minas e Energia. 768p. <https:...>
Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., Yoder, D. C. (1997). Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), Agriculture Handbook Number 703. <https:...>
USDA-Agricultural Research Service. (2013). Science Documentation Revised Universal Soil Loss Equation Version 2. <https://www.ars.usda.gov/ARSUserFiles/60600505/RUSLE/RUSLE2_Science_Doc.pdf>.
Wischmeier, W. and Smith, D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. Agricultural Handbook No. 537. U.S. Department of Agriculture, Washington DC, USA. <https:...>
Dataset of physical and chemical attributes used in estimating soil erodibility.
data(Data_Erodibility)
data(Data_Erodibility)
Physical and chemical attributes used in estimating soil erodibility.
Dione Pereira Cardoso
Paulo Cesar Ossani
Junior Cesar Avanzi
Denardin, J. E. (1990). “Erodibilidade de solo estimada por meio de parâmetros físicos e químicos”. Piracicaba, ESALQ, 1990. 81p. (Tese de Doutorado). <https:...>
RadamBrasil, P. (1981a). Folha SC. 22 Tocantins, Rio de Janeiro: Ministério das Minas e Energia. 524p. <https:...>
RadamBrasil, P. (1981b). FOLHA SD. 22 Goiás, Rio de Janeiro: Ministério das Minas e Energia. 640p. <https:...>
RadamBrasil, P. (1982). Folha SD. 23: Brasília, Rio de Janeiro: Ministério das Minas e Energia. 660p. <https:...>
RadamBrasil, P. (1983). Folha SE. 22 Goiânia, Rio de Janeiro: Ministério das Minas e Energia. 768p. <https:...>
data(Data_Erodibility) head(Data_Erodibility)
data(Data_Erodibility) head(Data_Erodibility)
Sub-hourly rainfall data for the municipality of Peixe, TO, for the period January to December 2023.
data(Data_Rainfall_minutes)
data(Data_Rainfall_minutes)
Data set with 22,032 observations with 3 variables, referring to precipitation from January to December 2023, in the municipality of Peixe, TO, Brazil. The columns being: date, times and rainfall.
Dione Pereira Cardoso
Paulo Cesar Ossani
Junior Cesar Avanzi
Cemaden (2024). Centro nacional de monitoramento e alertas de desastres naturais - <http://www.cemaden.gov.br/apresentacao/>.
data(Data_Rainfall_minutes) head(Data_Rainfall_minutes)
data(Data_Rainfall_minutes) head(Data_Rainfall_minutes)
Monthly rainfall data for the municipality of Peixe, TO, for the period from 2013 to 2023 (Source: BDMEP-INMET, 2024).
data(Data_Rainfall_month)
data(Data_Rainfall_month)
Dataset monthly referring to rainfall in 2013 and 2023, in the municipality of Peixe, TO, Brazil.
Dione Pereira Cardoso
Paulo Cesar Ossani
Junior Cesar Avanzi
INMET - Instituto Nacional de Meteorologia (2018). “BDMEP - Banco de Dados Meteorológicos para Ensino e Pesquisa - Série Histórica - Dados Mensais – Precipitação (mm)”. Brasília.
data(Data_Rainfall_month) head(Data_Rainfall_month)
data(Data_Rainfall_month) head(Data_Rainfall_month)
Dataset of erosivity, erodibility, topography, LULC, and support conservation practices.
data(Data_SoilLoss)
data(Data_SoilLoss)
Dataset of erosivity, erodibility, topography, LULC, and support conservation practices of several years.
Dione Pereira Cardoso
Paulo Cesar Ossani
Junior Cesar Avanzi
data(Data_SoilLoss) head(Data_SoilLoss)
data(Data_SoilLoss) head(Data_SoilLoss)
The function estimates the soil erodibility factor.
KFactor(df_kfactor)
KFactor(df_kfactor)
df_kfactor |
Data to be analyzed. |
kfactor |
Tabulated results of the k factor. |
Dione Pereira Cardoso
Paulo Cesar Ossani
Junior Cesar Avanzi
Godoi, R. F.; Rodrigues, D. B.; Borrelli, P.; Oliveira, P. T. S. (2021). “High-resolution soil erodibility map of Brazil”. Science of The Total Environment, v. 781, p. 146673. <doi:10.1016/j.scitotenv.2021.146673>.
Wischmeier, W. and Smith, D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. Agricultural Handbook No. 537. U.S. Department of Agriculture, Washington DC, USA. <https:...>
data(Data_Erodibility) kfactor <- KFactor(Data_Erodibility) round(kfactor,6) # result K factor
data(Data_Erodibility) kfactor <- KFactor(Data_Erodibility) round(kfactor,6) # result K factor
The function calculates the rainfall erosivity factor.
RFactor_calc(data, erosive.precip = 10, equation = "WS")
RFactor_calc(data, erosive.precip = 10, equation = "WS")
data |
Data to be analyzed. |
erosive.precip |
Precipitation considered erosive (default = 10). |
equation |
"WS" - Wischmeier and Smith (defaul), |
result |
Tabulated results. |
record |
Record of rainfall relative to 5, 10, 15, 30 or 60 minutes. |
Dione Pereira Cardoso
Paulo Cesar Ossani
Junior Cesar Avanzi
Brown, L.C. and Foster, G.R. (1987). Storm erosivity using idealized intensity distributions. Trans. ASAE 30, 2, 379–386. <https:...>.
USDA-Agricultural Research Service. (2013). Science Documentation Revised Universal Soil Loss Equation Version 2. <https://www.ars.usda.gov/ARSUserFiles/60600505/RUSLE/RUSLE2_Science_Doc.pdf>.
Wischmeier, W. and Smith, D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. Agricultural Handbook No. 537. U.S. Department of Agriculture, Washington DC, USA. <https:...>.
data(Data_Rainfall_minutes) res <- RFactor_calc(Data_Rainfall_minutes, erosive.precip = 10, equation = "WS") res$result
data(Data_Rainfall_minutes) res <- RFactor_calc(Data_Rainfall_minutes, erosive.precip = 10, equation = "WS") res$result
The function estimates the rainfall erosivity factor.
RFactor_est(data, latitude, longitude)
RFactor_est(data, latitude, longitude)
data |
Data to be analyzed. |
latitude |
Latitude |
longitude |
Longitude |
RFactor |
Estimated rainfall erosivity. |
equation |
Equation used for estimations. |
Dione Pereira Cardoso
Paulo Cesar Ossani
Junior Cesar Avanzi
Arnoldus H. M. J. (1980). An approximation of the rainfall factor in the universal soil loss equation. In: De Boodt M, Gabriels D (eds) Assessment of erosion. JohnWiley & Sons, Chichister, pp 127–132. <https:...>.
Oliveira, P. T. S. and Wendland, E.; Nearing, M. A. (2013). “Rainfall erosivity in Brazil: A review”. Catena, v. 100, p. 139-147, 2013. <doi:10.1016/j.catena.2012.08.006>.
data(Data_Rainfall_month) rfactor <- RFactor_est(Data_Rainfall_month[,2:13], latitude = -12.01527777, longitude = -48.544444440) rfactor$RFactor rfactor$equation
data(Data_Rainfall_month) rfactor <- RFactor_est(Data_Rainfall_month[,2:13], latitude = -12.01527777, longitude = -48.544444440) rfactor$RFactor rfactor$equation
The function estimates soil losses according to USLE and its revised versions (RUSLE).
SoilLoss(df_SoilLoss)
SoilLoss(df_SoilLoss)
df_SoilLoss |
Data to be analyzed. |
result.A |
Tabulated results of the A (Soil loss). |
Dione Pereira Cardoso
Paulo Cesar Ossani
Junior Cesar Avanzi
Wischmeier, W. and Smith, D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. Agricultural Handbook No. 537. U.S. Department of Agriculture, Washington DC, USA. <https:...>.
data(Data_SoilLoss) SoilLoss <- SoilLoss(Data_SoilLoss[,2:6]) round(SoilLoss,2) # result Soil loss
data(Data_SoilLoss) SoilLoss <- SoilLoss(Data_SoilLoss[,2:6]) round(SoilLoss,2) # result Soil loss